Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J R Stat Soc Ser A Stat Soc ; 185(Suppl 1): S112-S130, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2301654

ABSTRACT

The reproduction number R has been a central metric of the COVID-19 pandemic response, published weekly by the UK government and regularly reported in the media. Here, we provide a formal definition and discuss the advantages and most common misconceptions around this quantity. We consider the intuition behind different formulations of R , the complexities in its estimation (including the unavoidable lags involved), and its value compared to other indicators (e.g. the growth rate) that can be directly observed from aggregate surveillance data and react more promptly to changes in epidemic trend. As models become more sophisticated, with age and/or spatial structure, formulating R becomes increasingly complicated and inevitably model-dependent. We present some models currently used in the UK pandemic response as examples. Ultimately, limitations in the available data streams, data quality and time constraints force pragmatic choices to be made on a quantity that is an average across time, space, social structure and settings. Effectively communicating these challenges is important but often difficult in an emergency.

2.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2284009

ABSTRACT

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

3.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Article in English | MEDLINE | ID: covidwho-2236610

ABSTRACT

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Reproduction
4.
BMC Med ; 21(1): 25, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2196270

ABSTRACT

BACKGROUND: Predicting the likely size of future SARS-CoV-2 waves is necessary for public health planning. In England, voluntary "plan B" mitigation measures were introduced in December 2021 including increased home working and face coverings in shops but stopped short of restrictions on social contacts. The impact of voluntary risk mitigation behaviours on future SARS-CoV-2 burden is unknown. METHODS: We developed a rapid online survey of risk mitigation behaviours ahead of the winter 2021 festive period and deployed in two longitudinal cohort studies in the UK (Avon Longitudinal Study of Parents and Children (ALSPAC) and TwinsUK/COVID Symptom Study (CSS) Biobank) in December 2021. Using an individual-based, probabilistic model of COVID-19 transmission between social contacts with SARS-CoV-2 Omicron variant parameters and realistic vaccine coverage in England, we predicted the potential impact of the SARS-CoV-2 Omicron wave in England in terms of the effective reproduction number and cumulative infections, hospital admissions and deaths. Using survey results, we estimated in real-time the impact of voluntary risk mitigation behaviours on the Omicron wave in England, if implemented for the entire epidemic wave. RESULTS: Over 95% of survey respondents (NALSPAC = 2686 and NTwins = 6155) reported some risk mitigation behaviours, with vaccination and using home testing kits reported most frequently. Less than half of those respondents reported that their behaviour was due to "plan B". We estimate that without risk mitigation behaviours, the Omicron variant is consistent with an effective reproduction number between 2.5 and 3.5. Due to the reduced vaccine effectiveness against infection with the Omicron variant, our modelled estimates suggest that between 55% and 60% of the English population could be infected during the current wave, translating into between 12,000 and 46,000 cumulative deaths, depending on assumptions about severity and vaccine effectiveness. The actual number of deaths was 15,208 (26 November 2021-1 March 2022). We estimate that voluntary risk reduction measures could reduce the effective reproduction number to between 1.8 and 2.2 and reduce the cumulative number of deaths by up to 24%. CONCLUSIONS: Predicting future infection burden is affected by uncertainty in disease severity and vaccine effectiveness estimates. In addition to biological uncertainty, we show that voluntary measures substantially reduce the projected impact of the SARS-CoV-2 Omicron variant but that voluntary measures alone would be unlikely to completely control transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Child , Humans , Longitudinal Studies , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology
5.
Epidemics ; 41: 100635, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2041739

ABSTRACT

BACKGROUND: Social contact survey data forms a core component of modern epidemic models: however, there has been little assessment of the potential biases in such data. METHODS: We conducted focus groups with university students who had (n = 13) and had never (n = 14) completed a social contact survey during the COVID-19 pandemic. Qualitative findings were explored quantitatively by analysing participation data. RESULTS: The opportunity to contribute to COVID-19 research, to be heard and feel useful were frequently reported motivators for participating in the contact survey. Reductions in survey engagement following lifting of COVID-19 restrictions may have occurred because the research was perceived to be less critical and/or because the participants were busier and had more contacts. Having a high number of contacts to report, uncertainty around how to report each contact, and concerns around confidentiality were identified as factors leading to inaccurate reporting. Focus groups participants thought that financial incentives or provision of study results would encourage participation. CONCLUSIONS: Incentives could improve engagement with social contact surveys. Qualitative research can inform the format, timing, and wording of surveys to optimise completion and accuracy.

6.
Stat Methods Med Res ; 31(9): 1686-1703, 2022 09.
Article in English | MEDLINE | ID: covidwho-1582664

ABSTRACT

The serial interval of an infectious disease, commonly interpreted as the time between the onset of symptoms in sequentially infected individuals within a chain of transmission, is a key epidemiological quantity involved in estimating the reproduction number. The serial interval is closely related to other key quantities, including the incubation period, the generation interval (the time between sequential infections), and time delays between infection and the observations associated with monitoring an outbreak such as confirmed cases, hospital admissions, and deaths. Estimates of these quantities are often based on small data sets from early contact tracing and are subject to considerable uncertainty, which is especially true for early coronavirus disease 2019 data. In this paper, we estimate these key quantities in the context of coronavirus disease 2019 for the UK, including a meta-analysis of early estimates of the serial interval. We estimate distributions for the serial interval with a mean of 5.9 (95% CI 5.2; 6.7) and SD 4.1 (95% CI 3.8; 4.7) days (empirical distribution), the generation interval with a mean of 4.9 (95% CI 4.2; 5.5) and SD 2.0 (95% CI 0.5; 3.2) days (fitted gamma distribution), and the incubation period with a mean 5.2 (95% CI 4.9; 5.5) and SD 5.5 (95% CI 5.1; 5.9) days (fitted log-normal distribution). We quantify the impact of the uncertainty surrounding the serial interval, generation interval, incubation period, and time delays, on the subsequent estimation of the reproduction number, when pragmatic and more formal approaches are taken. These estimates place empirical bounds on the estimates of most relevant model parameters and are expected to contribute to modeling coronavirus disease 2019 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Reproduction , Uncertainty
7.
Wellcome Open Res ; 5: 278, 2020.
Article in English | MEDLINE | ID: covidwho-1485514

ABSTRACT

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective population-based cohort study which recruited pregnant women in 1990-1992 from the Bristol area (UK). ALSPAC has followed these women, their partners (Generation 0; G0) and their offspring (Generation 1; G1) ever since. From 2012, ALSPAC has identified G1 participants who were pregnant (or their partner was) or had become parents, and enrolled them, their partners, and children in the ALSPAC-Generation 2 (ALSPAC-G2) study, providing a unique multi-generational cohort. At present, approximately 1,100 G2 children (excluding those in utero) from 810 G1 participants have been enrolled. In response to the COVID-19 pandemic, ALSPAC rapidly deployed two online questionnaires; one during the initial lockdown phase in 2020 (9 th April-15 th May), and another when national lockdown restrictions were eased (26 th May-5 th July). As part of this second questionnaire, G1 parents completed a questionnaire about each of their G2 children. This covered: parental reports of children's feelings and behaviour since lockdown, school attendance, contact patterns, and health. A total of 289 G1 participants completed this questionnaire on behalf of 411 G2 children. This COVID-19 G2 questionnaire data can be combined with pre-pandemic ALSPAC-G2 data, plus ALSPAC-G1 and -G0 data, to understand how children's health and behaviour has been affected by the pandemic and its management. Data from this questionnaire will be complemented with linkage to health records and results of biological testing as they become available. Prospective studies are necessary to understand the impact of this pandemic on children's health and development, yet few relevant studies exist; this resource will aid these efforts. Data has been released as: 1) a freely-available dataset containing participant responses with key sociodemographic variables; and 2) an ALSPAC-held dataset which can be combined with existing ALSPAC data, enabling bespoke research across all areas supported by the study.

8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1371647

ABSTRACT

Epidemic preparedness depends on our ability to predict the trajectory of an epidemic and the human behavior that drives spread in the event of an outbreak. Changes to behavior during an outbreak limit the reliability of syndromic surveillance using large-scale data sources, such as online social media or search behavior, which could otherwise supplement healthcare-based outbreak-prediction methods. Here, we measure behavior change reflected in mobile-phone call-detail records (CDRs), a source of passively collected real-time behavioral information, using an anonymously linked dataset of cell-phone users and their date of influenza-like illness diagnosis during the 2009 H1N1v pandemic. We demonstrate that mobile-phone use during illness differs measurably from routine behavior: Diagnosed individuals exhibit less movement than normal (1.1 to 1.4 fewer unique tower locations; [Formula: see text]), on average, in the 2 to 4 d around diagnosis and place fewer calls (2.3 to 3.3 fewer calls; [Formula: see text]) while spending longer on the phone (41- to 66-s average increase; [Formula: see text]) than usual on the day following diagnosis. The results suggest that anonymously linked CDRs and health data may be sufficiently granular to augment epidemic surveillance efforts and that infectious disease-modeling efforts lacking explicit behavior-change mechanisms need to be revisited.


Subject(s)
Behavior , Cell Phone , Communicable Diseases/epidemiology , Cell Phone Use , Communicable Diseases/diagnosis , Geography , Humans , Iceland/epidemiology , Information Dissemination , Movement , Privacy
9.
Nat Commun ; 12(1): 5017, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361635

ABSTRACT

Controlling COVID-19 transmission in universities poses challenges due to the complex social networks and potential for asymptomatic spread. We developed a stochastic transmission model based on realistic mixing patterns and evaluated alternative mitigation strategies. We predict, for plausible model parameters, that if asymptomatic cases are half as infectious as symptomatic cases, then 15% (98% Prediction Interval: 6-35%) of students could be infected during the first term without additional control measures. First year students are the main drivers of transmission with the highest infection rates, largely due to communal residences. In isolation, reducing face-to-face teaching is the most effective intervention considered, however layering multiple interventions could reduce infection rates by 75%. Fortnightly or more frequent mass testing is required to impact transmission and was not the most effective option considered. Our findings suggest that additional outbreak control measures should be considered for university settings.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Universities , Disease Outbreaks/prevention & control , Humans , Models, Biological , SARS-CoV-2/isolation & purification , Students , Surveys and Questionnaires , United Kingdom/epidemiology
10.
R Soc Open Sci ; 8(8): 210310, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356753

ABSTRACT

In this paper, we present work on SARS-CoV-2 transmission in UK higher education settings using multiple approaches to assess the extent of university outbreaks, how much those outbreaks may have led to spillover in the community, and the expected effects of control measures. Firstly, we found that the distribution of outbreaks in universities in late 2020 was consistent with the expected importation of infection from arriving students. Considering outbreaks at one university, larger halls of residence posed higher risks for transmission. The dynamics of transmission from university outbreaks to wider communities is complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any detectable signal of spillover to the local population. Secondly, we explored proposed control measures for reopening and keeping open universities. We found the proposal of staggering the return of students to university residence is of limited value in terms of reducing transmission. We show that student adherence to testing and self-isolation is likely to be much more important for reducing transmission during term time. Finally, we explored strategies for testing students in the context of a more transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.

11.
Epidemiology and Infection ; 149, 2021.
Article in English | ProQuest Central | ID: covidwho-1351911

ABSTRACT

UK universities re-opened in September 2020, amidst the coronavirus epidemic. During the first term, various national social distancing measures were introduced, including banning groups of >6 people and the second lockdown in November;however, outbreaks among university students occurred. We aimed to measure the University of Bristol staff and student contact patterns via an online, longitudinal survey capturing self-reported contacts on the previous day. We investigated the change in contacts associated with COVID-19 guidance periods: post-first lockdown (23/06/2020–03/07/2020), relaxed guidance period (04/07/2020–13/09/2020), ‘rule-of-six’ period (14/09/2020–04/11/2020) and the second lockdown (05/11/2020–25/11/2020). In total, 722 staff (4199 responses) and 738 students (1906 responses) were included in the study. For staff, daily contacts were higher in the relaxed guidance and ‘rule-of-six’ periods than the post-first lockdown and second lockdown. Mean student contacts dropped between the ‘rule-of-six’ and second lockdown periods. For both staff and students, the proportion meeting with groups larger than six dropped between the ‘rule-of-six’ period and the second lockdown period, although was higher for students than for staff. Our results suggest university staff and students responded to national guidance by altering their social contacts. Most contacts during the second lockdown were household contacts. The response in staff and students was similar, suggesting that students can adhere to social distancing guidance while at university. The number of contacts recorded for both staff and students were much lower than those recorded by previous surveys in the UK conducted before the COVID-19 pandemic.

12.
PLoS One ; 16(4): e0251222, 2021.
Article in English | MEDLINE | ID: covidwho-1314374

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0241027.].

13.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200284, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309700

ABSTRACT

In the era of social distancing to curb the spread of COVID-19, bubbling is the combining of two or more households to create an exclusive larger group. The impact of bubbling on COVID-19 transmission is challenging to quantify because of the complex social structures involved. We developed a network description of households in the UK, using the configuration model to link households. We explored the impact of bubbling scenarios by joining together households of various sizes. For each bubbling scenario, we calculated the percolation threshold, that is, the number of connections per individual required for a giant component to form, numerically and theoretically. We related the percolation threshold to the household reproduction number. We find that bubbling scenarios in which single-person households join with another household have a minimal impact on network connectivity and transmission potential. Ubiquitous scenarios where all households form a bubble are likely to lead to an extensive transmission that is hard to control. The impact of plausible scenarios, with variable uptake and heterogeneous bubble sizes, can be mitigated with reduced numbers of contacts outside the household. Bubbling of households comes at an increased risk of transmission; however, under certain circumstances risks can be modest and could be balanced by other changes in behaviours. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/transmission , COVID-19/virology , Family Characteristics , Humans , Physical Distancing , United Kingdom/epidemiology
14.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200280, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309697

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reproduction number has become an essential parameter for monitoring disease transmission across settings and guiding interventions. The UK published weekly estimates of the reproduction number in the UK starting in May 2020 which are formed from multiple independent estimates. In this paper, we describe methods used to estimate the time-varying SARS-CoV-2 reproduction number for the UK. We used multiple data sources and estimated a serial interval distribution from published studies. We describe regional variability and how estimates evolved during the early phases of the outbreak, until the relaxing of social distancing measures began to be introduced in early July. Our analysis is able to guide localized control and provides a longitudinal example of applying these methods over long timescales. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2 , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Contact Tracing , Disease Outbreaks , Humans , Physical Distancing , United Kingdom/epidemiology
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200276, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309694

ABSTRACT

In the absence of a vaccine, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission has been controlled by preventing person-to-person interactions via social distancing measures. In order to re-open parts of society, policy-makers need to consider how combinations of measures will affect transmission and understand the trade-offs between them. We use age-specific social contact data, together with epidemiological data, to quantify the components of the COVID-19 reproduction number. We estimate the impact of social distancing policies on the reproduction number by turning contacts on and off based on context and age. We focus on the impact of re-opening schools against a background of wider social distancing measures. We demonstrate that pre-collected social contact data can be used to provide a time-varying estimate of the reproduction number (R). We find that following lockdown (when R= 0.7, 95% CI 0.6, 0.8), opening primary schools has a modest impact on transmission (R = 0.89, 95% CI 0.82-0.97) as long as other social interactions are not increased. Opening secondary and primary schools is predicted to have a larger impact (R = 1.22, 95% CI 1.02-1.53). Contact tracing and COVID security can be used to mitigate the impact of increased social mixing to some extent; however, social distancing measures are still required to control transmission. Our approach has been widely used by policy-makers to project the impact of social distancing measures and assess the trade-offs between them. Effective social distancing, contact tracing and COVID security are required if all age groups are to return to school while controlling transmission. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/virology , Communicable Disease Control/trends , Contact Tracing/trends , Humans , Physical Distancing , United Kingdom/epidemiology
16.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200273, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309691

ABSTRACT

Many countries have banned groups and gatherings as part of their response to the pandemic caused by the coronavirus, SARS-CoV-2. Although there are outbreak reports involving mass gatherings, the contribution to overall transmission is unknown. We used data from a survey of social contact behaviour that specifically asked about contact with groups to estimate the population attributable fraction (PAF) due to groups as the relative change in the basic reproduction number when groups are prevented. Groups of 50+ individuals accounted for 0.5% of reported contact events, and we estimate that the PAF due to groups of 50+ people is 5.4% (95% confidence interval 1.4%, 11.5%). The PAF due to groups of 20+ people is 18.9% (12.7%, 25.7%) and the PAF due to groups of 10+ is 25.2% (19.4%, 31.4%). Under normal circumstances with pre-COVID-19 contact patterns, large groups of individuals have a relatively small epidemiological impact; small- and medium-sized groups between 10 and 50 people have a larger impact on an epidemic. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Pandemics , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Humans , Physical Distancing , SARS-CoV-2/pathogenicity
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200272, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309690

ABSTRACT

An outbreak of a novel coronavirus was first reported in China on 31 December 2019. As of 9 February 2020, cases have been reported in 25 countries, including probable human-to-human transmission in England. We adapted an existing national-scale metapopulation model to capture the spread of COVID-19 in England and Wales. We used 2011 census data to inform population sizes and movements, together with parameter estimates from the outbreak in China. We predict that the epidemic will peak 126 to 147 days (approx. 4 months) after the start of person-to-person transmission in the absence of controls. Assuming biological parameters remain unchanged and transmission persists from February, we expect the peak to occur in June. Starting location and model stochasticity have a minimal impact on peak timing. However, realistic parameter uncertainty leads to peak time estimates ranging from 78 to 241 days following sustained transmission. Seasonal changes in transmission rate can substantially impact the timing and size of the epidemic. We provide initial estimates of the epidemic potential of COVID-19. These results can be refined with more precise parameters. Seasonal changes in transmission could shift the timing of the peak into winter, with important implications for healthcare capacity planning. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/transmission , COVID-19/virology , China/epidemiology , England/epidemiology , Humans , Wales/epidemiology
18.
Sci Rep ; 11(1): 11728, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1258594

ABSTRACT

University students have unique living, learning and social arrangements which may have implications for infectious disease transmission. To address this data gap, we created CONQUEST (COroNavirus QUESTionnaire), a longitudinal online survey of contacts, behaviour, and COVID-19 symptoms for University of Bristol (UoB) staff/students. Here, we analyse results from 740 students providing 1261 unique records from the start of the 2020/2021 academic year (14/09/2020-01/11/2020), where COVID-19 outbreaks led to the self-isolation of all students in some halls of residences. Although most students reported lower daily contacts than in pre-COVID-19 studies, there was heterogeneity, with some reporting many (median = 2, mean = 6.1, standard deviation = 15.0; 8% had ≥ 20 contacts). Around 40% of students' contacts were with individuals external to the university, indicating potential for transmission to non-students/staff. Only 61% of those reporting cardinal symptoms in the past week self-isolated, although 99% with a positive COVID-19 test during the 2 weeks before survey completion had self-isolated within the last week. Some students who self-isolated had many contacts (mean = 4.3, standard deviation = 10.6). Our results provide context to the COVID-19 outbreaks seen in universities and are available for modelling future outbreaks and informing policy.


Subject(s)
COVID-19/etiology , COVID-19/psychology , Quarantine/statistics & numerical data , Students/psychology , Universities , Adult , Aged , COVID-19/epidemiology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Quarantine/psychology , Regression Analysis , Social Isolation , Students/statistics & numerical data , Surveys and Questionnaires , United Kingdom , Young Adult
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20210001, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1246849

ABSTRACT

Infectious disease modelling has played an integral part of the scientific evidence used to guide the response to the COVID-19 pandemic. In the UK, modelling evidence used for policy is reported to the Scientific Advisory Group for Emergencies (SAGE) modelling subgroup, SPI-M-O (Scientific Pandemic Influenza Group on Modelling-Operational). This Special Issue contains 20 articles detailing evidence that underpinned advice to the UK government during the SARS-CoV-2 pandemic in the UK between January 2020 and July 2020. Here, we introduce the UK scientific advisory system and how it operates in practice, and discuss how infectious disease modelling can be useful in policy making. We examine the drawbacks of current publishing practices and academic credit and highlight the importance of transparency and reproducibility during an epidemic emergency. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/virology , Humans , United Kingdom/epidemiology
20.
BMJ ; 372: n579, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1125312

ABSTRACT

OBJECTIVE: To establish whether there is any change in mortality from infection with a new variant of SARS-CoV-2, designated a variant of concern (VOC-202012/1) in December 2020, compared with circulating SARS-CoV-2 variants. DESIGN: Matched cohort study. SETTING: Community based (pillar 2) covid-19 testing centres in the UK using the TaqPath assay (a proxy measure of VOC-202012/1 infection). PARTICIPANTS: 54 906 matched pairs of participants who tested positive for SARS-CoV-2 in pillar 2 between 1 October 2020 and 29 January 2021, followed-up until 12 February 2021. Participants were matched on age, sex, ethnicity, index of multiple deprivation, lower tier local authority region, and sample date of positive specimens, and differed only by detectability of the spike protein gene using the TaqPath assay. MAIN OUTCOME MEASURE: Death within 28 days of the first positive SARS-CoV-2 test result. RESULTS: The mortality hazard ratio associated with infection with VOC-202012/1 compared with infection with previously circulating variants was 1.64 (95% confidence interval 1.32 to 2.04) in patients who tested positive for covid-19 in the community. In this comparatively low risk group, this represents an increase in deaths from 2.5 to 4.1 per 1000 detected cases. CONCLUSIONS: The probability that the risk of mortality is increased by infection with VOC-202012/01 is high. If this finding is generalisable to other populations, infection with VOC-202012/1 has the potential to cause substantial additional mortality compared with previously circulating variants. Healthcare capacity planning and national and international control policies are all impacted by this finding, with increased mortality lending weight to the argument that further coordinated and stringent measures are justified to reduce deaths from SARS-CoV-2.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/mortality , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Factors , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL